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Abstract—An algorithm for output control of linear plants with an arbitrary relative degree
under the conditions of parametric uncertainty and bounded perturbations is proposed. Unlike
classical adaptive control algorithms, the proposed algorithm allows ensuring the plants out-
put tracking of the reference signal, with the tracking error being in the set specified by the
developer. An example illustrating the efficiency of the proposed method is given.
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1. INTRODUCTION

In this work, we consider the adaptive output tracking problem with respect to the reference
signal with the given control quality guaranteed at any instant. We consider linear systems under
parametric uncertainty and external perturbations. First stated in the 1950s, the model reference
adaptive control problem is among the most studied ones. It is still relevant despite its respectable
age. There are new problems arising, such as increasing the computational performance of algo-
rithms, improving the quality of regulator tuning, generalizing the methods to include wider classes
of systems, etc. The first solutions of adaptive control problems were associated with a number
of assumptions, such as measurability of the state vector, the assumption for the systems transfer
function to be strictly positive and real, or the master signal or external perturbations to be repro-
ducible using an autonomous generator [1–4]. Approaches based on the apparatus of the second
Lyapunov method [5] and hyperstability theory [6] required measuring higher derivatives of the
tracking error. Later, this problem was solved using the augmented error method [7], high-order
adaptation algorithms [8], perturbation compensation methods [9, 10], etc. One of the key issues
faced by the above methods is that there is no way to influence the quality of the transient pro-
cesses [11]. Various options have been proposed to partially resolve this, such as the accelerated
convergence scheme [12, 13], the scheme with big coefficients in feedback [14], the nonvanishing
excitation condition met [15], non-smooth control laws [16], etc. Thus, the methods [7–10, 12–16]
impose significant constraints and solve the problem incompletely, with the control objective at-
tained only in asymptotics. At the same time, the obtained estimates of the characteristics of the
limit set are sufficiently rough. In [17–21], a method is proposed that ensures the output signal
is in the given set. In [22], based on the method from [17–21], an adaptive control law with the
output signal belonging to the given set is proposed. However, in [22], the relative degree of the
plant is assumed to equal the unity. In this work, using the approaches from [17–22] and a mod-
ified adaptation algorithm [23], we propose a new solution to the adaptive control problem with
the given control quality guaranteed [7, 8, 12, 14–16] for minimum-phase plants with an arbitrary

392



ADAPTIVE OUTPUT CONTROL 393

relative degree. The structure of the work is as follows. In Section 2, we state the adaptive tracking
problem with constraints on the output variable. In Section 3, we first synthesize a control law
that assumes measurability of the derivatives of the plants output signal. The obtained solution
is then generalized to the case when these derivatives are not measurable. In Section 4, we give
numerical simulations to illustrate the efficiency of the obtained solution.

2. STATEMENT OF THE PROBLEM

We consider the dynamic system

Q(p)y(t) = kR(p)u(t) + f(t), (1)

where t � 0, u(t)∈R is the control signal, y(t)∈R is the measurable controlled signal, f(t)∈R is
the bounded external perturbation, Q(s) and R(s) are normalized polynomials (i.e., polynomials
with higher coefficients equaling the unity) with unknown real coefficients and with the degrees
equaling n and m, respectively, ρ = n−m � 1, the polynomial R(s) is Hurwitz, p = d/dt is the
differentiation operator, the coefficient k > 0 is unknown, the boundary conditions y(i)(0), i = 2, n
are unknown, but the set of initial conditions y(0) is known. Throughout this work, s is a complex
variable.

We give the reference model

T (p)ym(t) = kmg(t), (2)

where g(t)∈R is a bounded and (ρ− 1) times differentiable master control, ym(t)∈R is the output
of the reference model, T (s) is the known normalized Hurwitz polynomial with real coefficients and
the degree ρ, km > 0.

The purpose of this work is to synthesize a control law that ensures the tracking error e(t) =
y(t)− ym(t) belongs to the set

E =
{
(t, e)∈R2 | t � 0, g(t) < e(t) < g(t)

}
, (3)

where the functions g(t) < 0, g(t) > 0, g(t)− g(t) > δ, δ > 0 are bounded and have bounded first
derivatives for any t � 0, and e(0)∈ E . The derivatives g(t) and g(t) should be bounded for the
method to be applied [19].

3. PRINCIPAL RESULT

3.1. Synthesizing an Ideal Control Law

We introduce an auxiliary control v and first assume its derivatives to be measurable. We
consider the control law

u(t) =
T (p)

p
v(t). (4)

We represent the polynomials Q(s) and R(s) as Q(s) =Qm(s)+ΔQ(s) and R(s) =Rm(s)+ΔR(s),
where the normalized Hurwitz polynomials Qm(s) and Rm(s) have the degrees n and m, respec-
tively, and Qm(s)/Rm(s) = T (s). The unknown polynomials ΔQ(s) and ΔR(s) have degrees n− 1
and m− 1, respectively. Taking into account (4), we transform (1) to the form

Qm(p)y(t) =
kRm(p)T (p)

p
v(t) +

kΔR(p)T (p)

p
v(t)−ΔQ(p)y(t) + f(t). (5)

Dividing (5) by Qm(p), kRm(p)T (p) and p, we write the result as

y(t) =
k

p

[
v(t) +

ΔR(p)

Rm(p)
v(t)− pΔQ(p)

kQm(p)
y(t) +

p

kQm(p)
f(t) + ε1(t)

]
, (6)
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where ε1(t) is an exponentially damped function depending on initial conditions (1). We express
ym(t) from (2) as

ym(t) =
k

p

[
km
k

gr(t) + ε2(t)

]
, (7)

where gr(t) =
p

T (p)g(t), ε2(t) is an exponentially damped function depending on initial condi-

tions (2). Taking into account the structure of (6) and (7), we rewrite e(t) as

e(t) =
k

p

[
v(t)− c01y(t)− c�02ζy(t)− c�03ζv(t)−

km
k

gr(t)+
p

kQm(p)
f(t)+ ε(t)

]
, (8)

where ε(t) = ε1(t)− ε2(t), the signals ζy(t), ζv(t) and gr(t) are formed using the following filters

ζ̇y(t) = Fyζy(t) + byy(t), ζy(0) = 0,

ζ̇v(t) = Fvζv(t) + bvv(t), ζv(0) = 0,

ζ̇g(t) = Fgζg(t) + bgg(t), ζg(0) = 0, gr(t) = L2ζg(t).

(9)

Here, b�i =
[
0 . . . 0 1

]
is the vector-column with the unity at the last position and zeros at

the others, i∈{y, v, g, η}, Lj =
[
0 . . . 0 1 0 . . . 0

]
is the row vector with the unity at the

jth position and zeros at the others. Here and in what follows, the matrices bi and Lj have the
same structure, and their dimensionality is clear from the context. The matrices Fy, Fv and Fg

of filters (9) are given in the Frobenius form with the characteristic polynomials Qm(s), Rm(s)
and T (s), respectively. The coefficient c01 is obtained from the expression

pΔQ(p)

kQm(p)
= c01 +

ΔQ̃(p)

kQm(p)
,

where ΔQ̃(s) is an unknown polynomial of the degree n − 1. The vectors c02 and c03 con-
sist of the coefficients of the polynomials ΔQ̃(s)/k and ΔR(s)/k, respectively. We introduce

the vector of constant unknown parameters c�0 =
[
c01 c�02 c�03 km/k

]
and the regression vector

ω�(t) =
[
y(t) ζ�y (t) ζ�v (t) gr(t)

]
. We rewrite (8) as

ė(t) = k
(
v(t)− c�0 ω(t) + f̄(t) + ε(t)

)
, (10)

where f̄(t) = p
kQm(p)f(t) is the signal bounded since Qm(s) is Hurwitz.

We apply the method from [19] to set the auxiliary control v(t) that ensures the error e(t) is in
set (3). To do this, we introduce an auxiliary signal ε(t) calculated by the formula

e(t) = Φ(ε(t), t), (11)

where the function Φ(ε(t), t) satisfies the conditions

(a) g(t) < Φ(ε(t), t) < g(t) for any t � 0 and ε∈R;

(b) the function Φ(ε(t), t) is continuously differentiable on ε(t) and t, and for any e∈E and
t � 0, the following holds

∂Φ

∂ε
(ε(t), t) �= 0;

(c) the function ∂Φ
∂t (ε(t), t) is bounded for any ε∈R and t � 0.

We give an example of transformation (11) in the form

Φ(ε(t), t) =
g(t) exp (ε(t)) + g(t)

exp (ε(t)) + 1
. (12)

For other examples of such functions (11) of coordinates, see [19].
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Taking into account (11), we consider the total time derivative of e(t) in the form

ė(t) =
∂Φ

∂ε
(ε(t), t)ε̇(t) +

∂Φ

∂t
(ε(t), t).

Taking into account (10) and property (b), we express e(t) as

ε̇(t) =

(
∂Φ

∂ε
(ε(t), t)

)−1 (
k(v(t) − c�0 ω(t) + f̄(t) + ε(t))− ∂Φ

∂t
(ε(t), t)

)
. (13)

Now, we choose an auxiliary control action and an adaptation algorithm in the form

v(t) = −sgn

{
∂Φ

∂ε
(ε(t), t)

}
αε(t) + c�(t)ω(t), (14)

ċ(t) = −
(
∂Φ

∂ε
(ε(t), t)

)−1

ε(t)ω(t) − γc(t), (15)

where α > 0 and γ > 0, c(t) is the vector of adjustable parameters. The transformation Φ(ε(t), t) is
chosen beforehand, and the degree of ∂Φ

∂ε (ε(t), t) is constant due to property (b), so the value of the
function sgn{·} in (14) is known. Substituting (14) into (13), we obtain the following expression

ε̇(t) =

(
∂Φ

∂ε
(ε(t), t)

)−1 (
−sgn

{
∂Φ

∂ε
(ε(t), t)

}
kαε(t) + k(c(t) − c0)

�ω(t) + Ξ(t)

)
, (16)

where Ξ(t) = k(f̄(t) + ε(t))− ∂Φ
∂t (ε(t), t) is a bounded function. We state a theorem and prove it

in the Appendix.

Theorem 1. Suppose the functions g(t) and g(t) satisfy the imposed requirements (see the para-
graph below (3)), and properties (a)–(c) of transformation (11) hold. Then, for any α > 0 and
γ > 0 in closed system (1), (2), (9), (15), (16), control objective (3) is attained.

Remark 1. In [22], the problem with the plant’s relative degree equaling 1 and the known
coefficient k is considered. Unlike the algorithm presented in [22], the procedure proposed in this
work allows excluding the term containing e(t) from the dynamics ε(t), choose a simplified control
law, and overcome the issue with the unknown k.

3.2. Synthesizing a Feasible Control Law

Control law (4) contains the derivatives of the auxiliary control v up to the (ρ− 1)th order. We
introduce the estimate ṽ of auxiliary control (14). Then, the new control law looks like

u(t) =
T (p)

p
ṽ(t), (17)

ξ̇(t) = G0ξ(t) +D0(ṽ(t)− v(t)), ṽ(t) = ξ1(t) = L1ξ(t). (18)

Here, ξ(t)∈Rρ is the vector of signal estimates v and its derivatives,

G0 =

[
0 Iρ−1

0 0

]
D�

0 =

[
−d1

μ
− d2
μ2

. . . − dρ
μρ

]
,

the numbers di, i = 1, ρ are chosen so that the matrix G = G0 +DL1 is Hurwitz, D� =[
d1 d2 . . . dρ

]
, and μ > 0 is a sufficiently small number. We introduce the vector

η(t) = Γ−1(ξ(t)− θ(t)), Γ = diag
{
μρ−1, μρ−2, . . . , μ, 1

}
, (19)
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where θ�(t) =
[
v(t) v̇(t) . . . v(ρ−1)(t)

]
. Taking into account (19), we write

Δv(t) = ṽ(t)− v(t) = μρ−1η1(t) = μρ−1L1η(t), ṽ(t) = v(t)+μρ−1L1η(t). (20)

Taking into account (17) and (20), we express ε̇ as

ε̇(t) =

(
∂Φ

∂ε
(ε(t), t)

)−1
(
− sgn

{
∂Φ

∂ε
(ε(t), t)

}
kαε(t)

+ k(c(t) − c0)
�ω(t) + μρ−1kL1η(t) + Ξ(t)

)
.

(21)

Taking into account (18) and (19), we obtain

μη̇(t) = Gη(t)− μbηv
(ρ)(t). (22)

We state the principal result of the work.

Theorem 2. Suppose the hypotheses of Theorem 1 hold. Then, there exists a number μ0 such
that control objective (3) is attained for μ � μ0 in closed system (1), (2), (9), (15), (21), (22).

Remark 2. Equation (22) is a singularly perturbed dynamical system. The analysis of such
systems shows [24] that under certain conditions on the right-hand side of the system and for
sufficiently small μ, the system has the same dissipativity domain and the same attraction domain
as the system for μ = 0, which is equivalent to using an ideal control law. As we showed in
Theorem 1, such a system attains objective (3), so it will be sufficient to use one of the results of
the theory of singularly perturbed systems to prove the theorem.

Theorem 2 shows the existence of a sufficiently small parameter μ0 while the search for its actual
value is an unsolved problem. The search for some quantitative characteristics, whose structure
includes high-order observers, is not always possible and often remains in the qualitative form
[28, 29]. Also, works [30, 31] point out that the iterative search for the value μ0, for which the
stability of the closed-loop system is achieved, can be carried out at the simulation stage.

Proof of Theorem 2. We rewrite (21) and (22) as

ε̇(t) =

(
∂Φ

∂ε
(ε(t), t)

)−1 (
−sgn

{
∂Φ

∂ε
(ε(t), t)

}
kαε(t)

+ k(c(t) − c0)
�ω(t) + μρ−1

2 kL1η(t) + Ξ(t)

)
,

μ1η̇(t) = Gη(t) − μ2bηv
(ρ)(t),

(23)

where μ1 = μ2 = μ. We use the lemma [29].

Lemma 1. If the system is described by the equation ẋ= f(x, μ1, μ2), x∈Rm0, where f(x, μ1, μ2)
is a continuous function Lipschitzian with respect to x and has a bounded closed dissipativity domain
μ2 = 0 for D = {x | F (x) < C}, where F (x) is a continuous piecewise smooth function positive
definite in Rm0 (in the sense of [26]), then there exists μ0 > 0 such that for μ2 � μ0 the original
system has the same dissipativity domain D if the relation

sup
|μ1|�μ̄1

{〈
∂F

∂x
(x), f(x, μ1, 0)

〉∣∣∣∣
F (x)=C

}
� −C1

holds when μ2 = 0 for some C1 > 0 and μ̄1 > 0.
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Substituting μ2 = 0 into (23), we have the closed-loop system with the ideal control law obtained
in the previous subsection. Theorem 1 shows that the solutions of the closed-loop system tend to
a bounded set, and the additional equation μ1η̇(t) = Gη(t) does not violate this condition since G
is Hurwitz. Hence, for a sufficiently small μ, the system preserves the dissipativity domain. The
theorem is proved.

4. SIMULATION

Example 1. We consider control plant (1) with the following linear differential operators

Q(p) = p4 + 6p3 − 3p2 − p+ 2 and kR(p) = p+ 1.

The initial conditions are p3y(0) = p2y(0) = py(0) = y(0) = 1. The external perturbation is
f(t) = 2 sin(1.5t) + d(t), where d(t) = sat{d̂(t)}, sat{·} is the saturation function, d̂(t) is white
noise simulated in Matlab Simulink using the Band-Limited White Noise block with the Noise
power parameter equaling 1 and the Sample time parameter equaling 0.1. Reference model (2)

2

1 5.

1

0 5.

0

– .0 5

–1

– .1 5
0 5 10 15 20

t, s

y
(t

)
m

, 
y(

t)

ym(t)
, Classic ACy(t)
, Proposed ACy(t)

Fig. 1. The output of the reference model (the black curve), the output of plant (1) when the high-order
adaptive robust algorithm is used (the blue curve), and the output of plant (1) when the proposed algorithm
is used (the red curve).

0 5 10 15 20
t, s

2

1

0

–1

e(
t)

–2

g(t)
g(t)

, Classic ACe(t)
, Proposed ACe(t)

Fig. 2. The constraints g(t) and g(t) (the blue and red curves), the control error when the high-order adaptive
robust algorithm is used (the green curve), and the control error when the proposed algorithm is used (the
black curve).
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that receives the master control g(t) = 2.5 sin(0.8t) has the following parameters

T (p) = p3 + 3p2 + 3p+ 1 and km = 1.

According to (4), we set the control law in the form u(t) = T (p)
p v(t). As the function Φ(ε(t), t)

we take (12). We give the constraints for the tracking error by the functions

g(t) = 2 exp(−4t) + 0.1,

g(t) = −g(t).

We choose Qm(p)= p4 + 4p3 + 6p2 + 4p+ 1, Rm(p) = p+ 1 and set in filters (9):

Fv = −1, Fg =

[
0 I2
−1 −3 −3

]
, Fy =

[
0 I3
−1 −4 −6 −4

]
.

We choose the parameters α = 5, γ = 1 and μ = 10−3 in (14), (15), and (18). We compare the pro-
posed control algorithm with the classical high-order adaptive algorithm [31] with the parameters
σc = 5, γc = 100 and μc = 200.

Figures 1 and 2 show that the classical algorithm fails. First, there is no way to set the control
quality during transient processes. Secondly, the limit set is not defined in advance and turns out
to be bigger than that specified using the proposed algorithm.

5. CONCLUSIONS

In this work, we propose a new model reference adaptive tracking algorithm with the given
control quality guaranteed over the entire interval of system operation. The method combines
the idea of adaptive control [23] and the approach [19] used to synthesize a nonlinear control law
under constraints. We compared the obtained result with the classical high-order adaptive control
law [27] by simulation. The proposed algorithm allowed us to ensure that the tracking error is
in a predetermined set at any instant while the methods from [23, 27] do not allow controlling
the values of the tracking error in the transient mode. Moreover, the estimates of the value of
the limit objective set obtained in [23, 27] depend on the values of unknown parameters and have
overestimated values, therefore, they cannot be used to set the control accuracy in the steady-
state mode. Thus, the proposed approach solves both these problems, and the control quality is
completely determined by the choice of bounding functions.
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APPENDIX

Proof of Theorem 1. By property (b) of transformation (11), the function ∂Φ
∂ε (ε(t), t) is sign-

definite. First, suppose that ∂Φ
∂ε (ε(t), t) > 0. We choose a Lyapunov function of the form

V1 = 0.5ε2(t) + 0.5k(c(t) − c0)
�(c(t) − c0) + χ

∞∫
t

(
∂Φ

∂ε
(ε(t), t)

)−1

ε2(s) ds,
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where χ > 0. Taking into account (15) and (16), we find V̇1 in the form

V̇1 = −αk

(
∂Φ

∂ε
(ε(t), t)

)−1

ε2(t) +

(
∂Φ

∂ε
(ε(t), t)

)−1

ε(t)(ψ(t) + kε(t))

− γk(c(t) − c0)
�c(t)− χ

(
∂Φ

∂ε
(ε(t), t)

)−1

ε2(t),

(A.1)

where ψ(t) = kf̄(t)− ∂Φ
∂t (ε(t), t) is bounded. We use the following relations

ε(t)ψ(t) � 0.5(ν−1ε2(t) + νψ2(t)),

ε(t)ε(t) � 0.5(ν−1ε2(t) + νε2(t)),

−(c(t)− c0)
�c(t) = −0.5((c(t) − c0)

�(c(t)− c0) + c�(t)c(t)− c�0 c0).

(A.2)

Taking into account (A.2), we rewrite (A.1) as

V̇1 � −
(
∂Φ

∂ε
(ε(t), t)

)−1(
αk − 0.5ν−1(1 + k)

)
ε2(t)

+ 0.5

(
∂Φ

∂ε
(ε(t), t)

)−1

νψ2(t) + 0.5γkc�0 c0

− 0.5γk
(
(c(t)− c0)

�(c(t) − c0) + c�(t)c(t)
)

−
(
∂Φ

∂ε
(ε(t), t)

)−1

(χ− 0.5kν)ε2(t).

(A.3)

Note that it follows from properties (a) and (b) of function (11) that it is differentiable every-
where, strictly monotone and bounded, and hence supt�0

{∂Φ
∂ε (ε(t), t)

}
< ∞ is bounded. Moreover,

supt�0{ψ(t)} < ∞ is bounded by property (c). Then, it follows from (A.3) that V̇1 < 0 is attained
when the condition

ν > 0.5α−1(k−1 + 1), χ > 0.5kν,

|ε(t)| >
√√√√ 0.5

αk − 0.5ν−1(1 + k)

(
ν

k
sup
t�0

{ψ(t)}2 + sup
t�0

{
∂Φ

∂ε
(ε(t), t)

}
γkc�0 c0

)
(A.4)

holds.

Obviously, there will always be ν and χ such that (A.4) holds. Hence, V̇1 < 0.

Now, we consider the case ∂Φ
∂ε (ε(t), t) < 0. We choose a Lyapunov function of the form

V2 = 0.5ε2(t) + 0.5k(c(t) − c0)
�(c(t)− c0).

We find V̇2 as

V̇2 =

(
∂Φ

∂ε
(ε(t), t)

)−1

kαε2(t) +

(
∂Φ

∂ε
(ε(t), t)

)−1

ε(t)(ψ(t) + kε(t))− γk(c(t)− c0)
�c(t). (A.5)

Using relations (A.2) for ν = 1, we rewrite (A.5) as

V̇2 �
(
∂Φ

∂ε
(ε(t), t)

)−1(
αk + 0.5k + 0.5

)
ε2(t) + 0.5

(
∂Φ

∂ε
(ε(t), t)

)−1

ψ2(t) + 0.5γkc�0 c0

− 0.5γk
(
(c(t)− c0)

�(c(t) − c0) + c�(t)c(t)
)
+ 0.5

(
∂Φ

∂ε
(ε(t), t)

)−1

kε2(t).

(A.6)
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Since ∂Φ
∂ε (ε(t), t) < 0, all terms but 0.5γkc�0 c0 are negative. Previously, we have shown that

supt�0

{∂Φ
∂ε (ε(t), t)

}
< ∞. Then, it follows from (A.6) that V̇2 < 0 is attained when the condition

|ε(t)| >
√
− inf

t�0

{
∂Φ

∂ε
(ε(t), t)

}
0.5γkc�0 c0

αk + 0.5k + 0.5
(A.7)

holds.

Inequalities (A.4) and (A.7) define the sets trajectories (16) tend to in each of the cases involved.
Then, by Theorem 3.1 from [19], trajectories (10) will belong to some subset E , which means that
objective (3) is fulfilled. The theorem is proved.
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